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Abstract

We consider the problem of how decision making can be fair
when the underlying probabilistic model of the world is not
known with certainty. We argue that recent notions of fairness
in machine learning need to explicitly incorporate parame-
ter uncertainty, hence we introduce the notion of Bayesian
fairness as a suitable candidate for fair decision rules. Using
balance, a definition of fairness introduced in Kleinberg, Mul-
lainathan, and Raghavan [2016], we show how a Bayesian
perspective can lead to well-performing and fair decision rules
even under high uncertainty.

Introduction
Fairness is an important property of algorithmic systems in
settings where decisions are made that affect individuals in
a population, for example in the context of loan decisions,
college admissions, hiring decision, or bail decisions.

Recognizing this, there has been considerable emphasis
in recent work on developing definitions of fairness in the
context of machine learning algorithms. In this paper, we
take a closer look at informational aspects of fairness. In
particular, by adopting a Bayesian viewpoint, we explicitly
take into account model uncertainty, something that turns out
to be crucial for fairness.

Uncertainty about the underlying probabilistic model of
the world has two main effects. Firstly, many notions of
fairness have been defined with respect to latent variables,
including model parameters. This means that we need to
take into account uncertainty about these latent variables
and parameters. Secondly, in many problems our decisions
determine the data that we will collect in the future. Ignoring
uncertainty may magnify subtle biases in our model.

By viewing fairness through a Bayesian perspective, we
avoid these problems. In particular, we demonstrate that
Bayesian policies can allow for suitable trade offs to be made
between utility and fairness, taking into account uncertainty
about model parameters.

We consider a setting where a decision maker (DM) makes
a sequence of decisions through some chosen policy π to
maximize her expected utility u. However, the DM must
trade off utility with some fairness criterion f . We assume
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the existence of some underlying probability law P , so that
the decision problem, when P is known, can be written as:

max
π

(1− λ)EπP u− λE
π
P f, (1)

where λ is the DM’s trade-off between fairness and utility.1
We adopt a Bayesian viewpoint and assume the DM has belief
β over some family of distributions P , {Pθ | θ ∈ Θ },
which may contain the actual law, i.e. Pθ∗ = P for some θ∗.

The DM’s policy π defines the actions at ∈ A the DM
takes at different (discrete) times t depending on the avail-
able information. More precisely, at time t the DM observes
some data xt ∈ X , and depending on her belief βt makes
a decision at ∈ A, so that π(at | βt, xt) defines a proba-
bility over actions for every possible belief and observation.
The DM has a utility function, modeled here with structure
u : A × Y → R, where Y is a set of outcomes (in a loan
setting, was the loan repaid on time?). The fairness concept
we focus on is a Bayesian version of balance [Kleinberg,
Mullainathan, and Raghavan, 2016], which is also a general-
ization of the equality of opportunity Hardt, Price, and Srebro
[2016].

The amount of uncertainty about the model parameters
directly influences the interpretation of the balance condition.
Informally, the more uncertain we are, the more stochastic
the decision rule will need to be.

Our contributions. In this paper, we develop a Bayesian
framework for fairness that recognizes that there can be a
high degree of uncertainty about model parameters and la-
tent variables, and especially when not a lot of data has been
collected, or in sequential settings. In particular, we propose
that the DM should take into account how unfair she would
be under all possible models, weighted by their probability.
Fairness is a property of the decision rule with respect to
the true model, and it is this that is used to measure fairness.
On the other hand, the appropriate way to achieve fairness
depends on the DM’s information, and it is this that is used
to derive algorithms. In order to work without model approx-
imations, we illustrate the approach in a simple setting. We
show that the policies that are obtained are qualitatively and

1We do not consider the alternative constrained problem,
i.e. max {EπP u | EπP f ≤ ε }, in the present paper.



quantitatively different when we consider uncertainty and
adopt a Bayesian viewpoint in comparison to when we do
not.

Given that the Bayesian approach to fairness takes into
account uncertainty and makes explicit consideration of the
DM’s information, we can also use the approach to select
policies that influence the data we collect, and thus our knowl-
edge about the model. This is an important informational
feedback effect, and one that a Bayesian methodology can
provide in a principled way. We provide experimental results
on the COMPAS dataset [Larson et al., 2016] as well as arti-
ficial data, showing the robustness of the Bayesian approach,
and comparing against methods that define fairness measures
according to a single, marginalized model (e.g. Hardt, Price,
and Srebro [2016]). While we mainly treat the non-sequential
setting, where the data is fixed, we can also accommodate
sequential, bandits-style settings, as explained in later sec-
tions. The results there provide a vivid illustration of what can
go wrong with a certainty-equivalent approach to achieving
fairness.

All missing proofs and details can be found in our supple-
mentary materials.

Related work. Algorithmic fairness has been studied quite
extensively in recent work. But we are not aware of work
that adopts a Bayesian perspective. For instance, [Dwork et
al., 2012; Chouldechova, 2016; Corbett-Davies et al., 2017;
Kleinberg, Mullainathan, and Raghavan, 2016; Kilbertus et
al., 2017] studied fairness under a setting where the model
is known. Corbett-Davies et al. [2017] have considered how
to satisfy fairness considerations while also maximizing ex-
pected utility. In this paper, we focus on notions of fairness
related to notions of conditional independence, the specifics
of which are discussed in the next section.

Dwork et al. [2012] consider an individual-fairness ap-
proach, and look for decision rules that are smooth in a sense
that similar individuals are treated similarly.

The recent work of Russell et al. [2017] considers the prob-
lem of uncertainty from the point of view of causal modeling,
with the three main differences to the present work being: (a)
they consider a PAC-like setting, rather than the Bayesian
framework; (b) we show that the effect of uncertainty re-
mains important even without varying the counterfactual
assumptions; and (c) the Bayesian framework easily admits
a sequential setting. Jabbari et al. [2016] and Joseph et al.
[2016] study fairness in sequential decision making settings,
but not from a Bayesian viewpoint.

There is also research on questions of fairness in other
machine learning contexts, such as clustering [Chierichetti
et al., 2017], natural language processing [Blodgett and
O’Connor, 2017] and recommendation systems [Celis and
Vishnoi, 2017].

Preliminaries
Chouldechova [2016] considers the problem of fair prediction
with disparate impact. She defines an action (a “statistic” in
her paper) a as test-fair with respect to the outcome y and
sensitive variable z if y is independent of z under the action

and parameter θ, i.e. if y ⊥⊥ z | a, θ. While the author
does not explicitly discuss the distribution Pθ, it is implicitly
assumed to be that of the true model. We slightly generalize
the definition of disparate impact as follows:

Definition 1 (Calibrated decision rule). A decision rule π(a |
x) is calibrated with respect to some distribution Pθ if y, z
are independent for all actions a taken, i.e. if

Pπθ (y, z | a) = Pπθ (y | a)Pπθ (z | a), (2)

where Pπθ is the distribution induced by Pθ and the decision
rule π.

Kleinberg, Mullainathan, and Raghavan [2016] also con-
sider two balance conditions (one for each label class), which
we re-interpret as follows. Here, we simplify the notation of
the decision rule so that π(a | x) corresponds to the probabil-
ity of taking action a given observation x.

Definition 2 (Balanced decision rule). A decision rule π(a |
x) is balanced with respect to some distribution Pθ if a, z
are independent for all y, i.e. if

Pπθ (a, z | y) = Pπθ (a | y)Pπθ (z | y), (3)

where Pπθ is the distribution induced by Pθ and the decision
rule π.

As with Chouldechova [2016], Kleinberg, Mullainathan,
and Raghavan [2016] also work with the true model. We will
slightly generalize the definition, stating balance with respect
to any model parameter.

It is known that calibration and balance cannot be achieved
simultaneously for non-trivial environments [Kleinberg, Mul-
lainathan, and Raghavan, 2016; Chouldechova, 2016]. This
is also true for our more general definitions, as we show in
Theorem S1 in the Supplementary material.

From a practitioner’s perspective, we must choose either
calibration or balance. We work with a generalized version
of the balance condition, because balance gracefully extends
to settings with uncertainty. In particular, balance involves
equality in the expectation of a score function (when writ-
ing the probabilities as the expectations of a 0-1 indicator
function; also depending on an observation x) under differ-
ent values of a sensitive variable z, conditioned on the true
(but latent) outcome y. Consequently, balance can always be
satisfied—by using a randomized decision rule that is inde-
pendent of x. This is not the case for the calibration condition
under model uncertainty, because calibration criteria depends
highly on the details of a model.

Bayesian Formulation
We first introduce a concrete, statistical decision problem.
The true (latent) outcome y is generated independently of the
DM’s decision, with a probability distribution that depends
on the available information x. There also exists a sensitive
attribute variable z, which may be dependent on x.2

2Depending on the application scenario, z may actually be a
subset of x and thus directly observable, while in other scenarios
it may be latent. Here we focus on the case where z is not directly
observed.
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Figure 1: A Bayesian decision problem with observations x,
outcome y, action a, sensitive variable z, utility u, unknown
parameter θ, belief β and policy π. The joint distribution of
x, y, z is fully determined by the unknown parameter θ, while
the conditional distribution of actions a given observations x
is given by the selected policy π. The DM’s utility function
is u, while the fairness of the policy depends on the problem
parameters.

Definition 3 (Statistical decision problem). See Figure 1 for
the decision diagram. The DM observes x ∈ X , then takes
a decision a ∈ A and obtains utility u(y, a) depending on a
true (latent) outcome y ∈ Y generated from some distribution
Pθ(y | x). The DM has a belief β ∈ B in the form of a
probability distribution on parameters θ ∈ Θ on a family
P , {Pθ(y | x) | θ ∈ Θ } of distributions. In the Bayesian
case, the belief β is a posterior formed through a prior and
available data. The DM has a utility function u : Y×A → R,
with utility depending on the DM’s action and the outcome.

For simplicity, we will assume that X , A, and Y , are finite
sets, whereas Θ is a subset of Rn. We focus on Bayesian
decision rules, i.e. rules whose decisions depend upon a pos-
terior belief β. The Bayes-optimal decision rule, ignoring
fairness, is defined below.

Definition 4 (Bayes-optimal decision rule). The Bayes-
optimal decision rule π∗ : B × X → A is a determin-
istic policy that maximizes the utility in expectation, i.e.
takes action π∗(β, x) ∈ argmaxa∈A uβ(a | x), with uβ(a |
x) ,

∑
y u(y, a)Pβ (y | x), where Pβ (y | x) ,

∫
Θ
Pθ(y |

x) dβ(θ) is the marginal distribution over outcomes condi-
tional on the observations according to the DM’s belief β.

The Bayes-optimal decision rule does not directly depend
on the sensitive variable z. We are interested in settings with
multiple time periods. At time t, the DM observes xt and
makes a decision at using policy πt and obtains some instan-
taneous payoff Ut = u(yt, at) and fairness violation Ft. The
DM’s utility is the sum of instantaneous payoffs over time,
U ,

∑T
t=1 u(yt, at) and she is interested in finding a policy

maximising U in expectation.
Although the Bayes-optimal decision rule brings the high-

est expected reward to the DM, it may be unfair. In the sequel,
we will define analogs of the balance notion of fairness in
terms of decision rules π, and investigate appropriate deci-
sion rules, that possibly result in randomized policies. In
particular, we shall consider a utility function that combines
the DM’s utility with the societal benefit that comes from
fairness, and search for Bayes-optimal decision rules with
respect to this new, combined utility.

In particular, we define a Bayesian analogue of the maxi-

mization problem (1) as:

max
π

(1− λ)Eπβ u− λE
π
β f

=max
π

∫
Θ

[(1− λ)Eπθ u− λE
π
θ f ] dβ(θ). (4)

To make this concrete, in the sequel we shall define the
appropriate Bayesian version of the balance condition.

Bayesian Balance
In the Bayesian setting, we would like our decisions to take
into account their impact on all possible models. That is,
fairness is measured with respect to the true model.

It turns out that sometimes only a trivial decision rule
can satisfy a strong form of balance in a setting with model
uncertainty. In particular, what if we insist that balance must
hold exactly, for all possible model parameters?
Theorem 1. A trivial decision rule of the form π(a | x) = pa
can always satisfy balance for a Bayesian decision problem.
However, it may be the only balanced decision rule, even
when a non-trivial balanced policy can be found for every
possible θ ∈ Θ.

The proof, as well as an example illustrating this result,
are in the supplementary materials.

For this reason, we consider the the p-norm of the deviation
from fairness with respect to our belief β:
Definition 5 (Bayesian Balance). We say that a decision rule
π is (α, p)-Bayes-balanced with respect to belief β if:

f(π) ,
∫
Θ

∑
a,y,z

∣∣∣∣∑
x

π(a|x)[Pθ(x, z|y)

− Pθ(x|y)Pθ(z|y)]
∣∣∣∣p dβ(θ) ≤ αp. (5)

This definition captures the expected deviation from bal-
ance of policy π, for a Bayesian DM under their belief β.
It measures the deviation of policy π from perfect balance
with respect to each possible parameter θ, and weighs this
deviation according to the probability of that model. This
provides a graceful trade-off between achieving near-balance
in the most likely models, while avoiding extreme unfairness
in less likely ones.

Why not use a single point estimate for the model, instead
of the full Bayesian approach? This would entail simply
measuring balance (and utility) with respect to the marginal
model, Pβ ,

∫
Θ
Pθ dβ(θ).

Definition 6 (Marginal balance). A decision rule π(·) is
(α, p)-marginal-Balanced with respect to belief β if ∀a, y, z:∑
a,y,z

∣∣∣∣∑
x

π(a|x) [Pβ(x, z|y)− Pβ(x|y)Pβ(z|y)]
∣∣∣∣p ≤ α.

(6)

One problem with this definition, which we will see in
our experimental results, is that the decision policy may be
very unfair towards other, high-probability models that are
different from the marginal model.



Still, both balance conditions can provide a bound on bal-
ance with respect to the true model. For this, denote the true
underlying model as θ∗, and define the (ε, δ)-accurate belief.
Definition 7. We call β(θ) an (ε, δ)-accurate belief with
respect to the true model θ∗ ∈ Θ, if with β-probability at
least 1− δ, ∀x, y, z:

|Pθ(x|y, z)− Pθ∗(x|y, z)| ≤ ε, |Pθ(x|y)− Pθ∗(x|y)| ≤ ε,

i.e. the set Θε for which the above conditions hold has mea-
sure β(Θε) ≥ 1− δ.

Under some conditions, the balance achieved through ei-
ther definition provides an approximation to balance under
the true model, as shown by the following theorem.
Theorem 2. If a decision rule satisfies either (α, 1)-
marginal-balance or (α, 1)-Bayes-balance for β or both, and
β is (ε, δ)-accurate, then the resulting decision rule is a

(α+ 2|A| · |Z| · |Y| · (ε+ δ), 1)-balanced

decision rule w.r.t. the true model θ∗.
This theorem says that if our belief β is concentrated

around the true model Pθ∗ , and our decision rule is fair with
respect to either definition, then it is also fair with respect to
the true model.

The Sequential setting
We can also extend the approach to a sequential setting, where
the information learned by the DM about the environment
depends on the action.

For example, if we approve a loan, we will only later dis-
cover if the loan is paid off on time. This information will
in turn affect our future decisions. Analogous to other se-
quential decision making problems such as Markov decision
processes [Puterman, 1994], we need to solve the following
optimization problem over a time horizon T :

max
π

Eβ1

[
T∑
t=1

(1− λ)Ut − λFt

]
, (7)

where π now must explicitly map future beliefs βt to proba-
bilities over actions. If the data that the DM obtains depends
on her decisions at, then she must consider adaptive policies,
as the next belief depends on the data obtained by the policy.

We can reformulate the maximization problem so as to
explicitly include the future changes in belief:

V ∗(βt) , sup
πt

Eπt

βt
[(1− λ)Ut − λFt]

+
∑
βt+1

V ∗(βt+1)Pπt

βt
(βt+1), (8)

under the mild assumption that the set of reachable next
beliefs is finite (easily satisfied when the set of outcomes
is finite). This now features the tradeoff between explore
(obtaining new knowledge) and exploit (maximizing utility).

However, just as in the bandits case [c.f. Duff, 2002], the
above computation is intractable, as the policy space is expo-
nential in T . For this reason, in this paper we only consider
myopic policies that select a policy (and decision) that is

optimal for the current step t, trading utility and fairness as
well as the value of the information at any particular single
step. A specific instance of this type of sequential version of
the problem is a later section.

Algorithms
We compare the Bayesian framework with the simpler,
marginal-model approach. In particular, for the Bayesian
framework, we directly optimize (4). Using the marginal sim-
plification, we maximize (1) with respect to the marginal
model Pβ .

Balance gradient descent
We have a family of models {Pθ } with a corresponding
subjective distribution β(θ). In order to derive algorithms,
we shall focus on the quantity:

C(π, θ) ,
∑
y,z

∥∥∑
x

π(a | x)∆θ(x, y, z)
∥∥
p
, (9)

This isthe deviation from balance for decision rule π under
parameter θ, where

∆θ(x, y, z) , Pθ(x, z | y)− Pθ(x | y)Pθ(z | y). (10)

Given this, the Bayesian balance of the policy is f(π) =∫
Θ
C(π, θ) dβ(θ).

In order to find a rule that trades-off utility for balance,
we maximize a convex combination of the expected utility
and deviation specified in (4). In particular, we look for a
parametrized rule πw solving the following unconstrained
maximization problem:

max
πw

∫
Θ

Vθ(πw) dβ(θ),

Vθ(πw) , (1− λ)Eπw

θ u− λC(πw, θ) (11)

To perform this maximization, we use parametrized poli-
cies and stochastic gradient descent. In particular, for a finite
set X and Y , the policies can be defined in terms of pa-
rameters wxa = π(a | x). Then we can perform stochastic
gradient descent as detailed in the Supplementary materials,
by sampling θ ∼ β, and calculating the gradient for each
sampled θ. For the marginal decision rule, we employ the
same approach, but instead of sampling the parameters from
the posterior, we use the parameters of the marginal model.

Experiments
We study the utility-fairness trade-off on artificial and real
data sets. We compare our approach, which uses a decision
rule based on the full Bayesian problem, to classical ap-
proaches such as Hardt, Price, and Srebro [2016] which op-
timize the DM’s policy with respect to a single model. We
show that the Bayesian approach gracefully handles fairness,
even with high model uncertainty, while a marginal approach
can be blatantly unfair. For an unbiased comparison, we as-
sume the same prior parameter distribution. We consider a
model where posteriors can be calculated in closed-form,
in order to focus on the choice of policy. However, our al-
gorithm is generally applicable, and could be combined for
example with MCMC inference.



Performance is evaluated with respect to the actual balance
and utility achieved: for the synthetic data this is measured
according to the actual data-generating distribution, while
for the COMPAS data this is the empirical distribution on a
holdout set.

The algorithm for optimizing policies uses stochastic gra-
dient descent. In particular, the Bayesian policy minimizes
(5) by sampling θ from the posterior distribution β and then
taking a step in the gradient direction. The marginal policy
simply performs steepest gradient descent for the marginal
model.

The results shown in Figures 2–5 display the performance
of the corresponding Bayesian or marginal decision rule for
different value of λ as more data is acquired. In the first two
experiments, we assume that no matter what the decision of
the DM is, zt, yt are always observed after the DM’s deci-
sion and so the model is fully updated. In that setting, it is
not necessary for the DM to take into account the informa-
tion generated by actions. However, in the third experiment,
described below, the values of zt and yt are only observed
when the DM makes the decision at = 1, and the DM faces
a generalized exploration problem.

The model we employ throughout is a discrete Bayesian
network model, with finite X ,Y,Z,A. The models are thus
described through multinomial distributions that capture the
dependency between different random variables. The avail-
able data is used to calculate a posterior distribution β(θ).
From this, we calculate both a marginal balanced rule as well
as a Bayesian balanced rule. The former uses the marginal
model directly, while the latter uses k = 16 samples from the
posterior distribution.3 We tested these approaches both on
synthetic data and on the COMPAS dataset. The conjugate
prior distribution to this model is a Dirichlet-product. The
graphical model is fully connected, and the model uses the
factorization Pθ(x, y, z) = Pθ(y | x, z)Pθ(x | z)Pθ(z). We
used this simple modeling choice throughout the paper, apart
from the small experiment on synthetic data in the following
section (Experiments on synthetic data). In all cases where a
Dirichlet prior was used, the Dirichlet prior parameters were
set equal to 1/2.

Experiments on synthetic data
Here we consider a discrete decision problem, with |X | = 8,
|Y| = |Z| = |A| = 2, and u(y, a) = I {y = a}. We gen-
erate 100 observations from this model. We perform the
experiment 10 times, each time generating data from a fully
connected, discrete Bayesian network with uniformly ran-
domly selected parameters. Unlike the rest of the paper, in
this example, the prior distribution has finite support on only
8 models. This means that the posterior will have effectively
converged to the true model after 100 observations.

As can be seen in Figure 2, the relative performance of the
Bayesian approach w.r.t. the marginal approach increases as
we put more emphasis on fairness (Figure 2 (a) cares nothing
about fairness.). In some cases (e.g. Figure 2 (c)), value for

3We found empirically that 16 was a sufficient number for stable
behaviour and efficient computation. For k = 1 the algorithm
reduces to an approximation of Thompson sampling.

the marginal approach decreases at the beginning and eventu-
ally reaches the same value as the Bayesian approach after
enough data has been observed. This conforms with our hy-
pothesis that one should take into account model uncertainty.
The fact that both approaches converge toward the maximum
value is in accordance with our formal results (Theorem 2).

Finally, Figure 3 and its extended version (Figure S1 in
supplementary materials) more clearly shows how well the
two different solutions perform with respect to the utility
fairness trade-off. As we vary λ and the amount of data,
both methods achieve the same utility. However the Bayesian
approach consistently achieves lower fairness violations for
similar U .

Experiments on COMPAS data
For the COMPAS dataset, we consider a discretization where
fields such as the number of offenses are converted to binary
features.4 We used the first 6000 observations for training
and the remaining 1214 observations for validation. Two
attributes are sensitive (sex, race), while six attributes (re-
lating to prior convictions and age) are used for the policy.
With discretization, there are a total of 12 distinct values
for the sensitive attributes and 141 for the features that are
used for the underlying model. The task is to predict re-
cidivism over the next two years, with DM utility function
u(a, y) = I {a = y}.

Figure 4 and its extended version (Figure S2 in the supple-
mentary materials) show the results of applying our analysis
to the COMPAS dataset used by ProPublica. Since in this
case the true model is unknown, the results are calculated
with respect to the marginal model estimated on the holdout
set. In this scenario we can see that when we only focus on
classification performance, the marginal and Bayesian deci-
sion rules perform equally well. However, when we place
more emphasis on fairness, we observe that the Bayesian
approach dominates. 5

Sequential allocation
Suppose now that the DM, at each time t, observes xt and has
a choice of actions at ∈ {0, 1}. Both actions are to predict
whether yt ∈ {0, 1} and have the following side-effect: the
DM only observes yt, zt upon decision at = 1, and other-
wise only observes xt. The utility is not directly observed by
the DM, and is measured against the empirical model in the
holdout set, as before. We use the same COMPAS dataset,
and the results are broadly similar, apart from the fact that
the Bayesian decision rule appears to remain consistent and
robust (blue and solid lines in Figure 5) in this setting, while
the marginal one’s performance degrades. This is because the
Bayesian decision rule explicitly takes uncertainty into ac-
count, while the marginal decision rule does not. The results

4We arrived at the specific discretization through cross validat-
ing the performance of a discrete Bayesian classifier over possible
discretizations.

5The measured performance performance may not monotoni-
cally increase with respect to the (rather small) holdout set. Even
if we had converged to the true model, measuring with respect to
an empirical estimate is problematic, as it will be ε-close to the true
model. This is particularly important for fairness considerations.
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Figure 2: Synthetic data. Test of the effect of the amount of data on the decisions of the Bayesian balance versus marginal
balance approach, for different values of the λ parameter, with evaluation with respect to the true model. As more weight is
placed on guaranteeing fairness, we see that the Bayesian approach is better able to guarantee fairness for the true model. The
plots show the average performance over 10 runs, with an initially uniform prior over a set of 8 models, one of which is the
correct one. In this setting |A| = |Y| = |Z| = 2 and |X | = 8.
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Figure 3: Synthetic data, utility-fairness trade-off. This plot is generated from the same data as Figure 2. However, now we
are plotting the utility and fairness of each individual policy separately. In all cases, it can be seen that the Bayesian policy
achieves the same utility as the non-Bayesian policy, while achieving a lower fairness violation.
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Figure 4: COMPAS dataset. Demonstration of balance on the COMPAS dataset. The plots show the value measured on the
holdout set for the Bayes and Marginal balance. Figures (a-c) show the utility achieved under different choices of λ as we we
observe each of the 6,000 training data points. Utility and fairness are measured on the empirical distribution of the remaining
data and it can be seen that the Bayesian approach dominates as soon as fairness becomes important, i.e. λ > 0.

are shown in Figure 5 and its extended version (Figure S3 in
supplementary materials). The larger discrepancy between
the Bayesian case in Figure 5(a) implies that explicitly mod-
elling uncertainty is also crucial for utility in this case.

Conclusion
Existing fairness criteria can be hard to satisfy or verify in a
learning setting because they are defined for the true model.
Recognizing this, we develop a Bayesian framework for fair-
ness, which allows a decision maker to explicitly reason about
uncertainty about the true model and thus the extent to which
a decision will, or will not be, fair. Beyond this, the Bayesian
approach is helpful because it points to the importance of
the informational aspects of fairness, and in particular for
sequential decisions and the role that they play in both their
current actions but their ability to censor or enable additional
information acquisition.
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